题目内容
【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
【答案】
(1)
解:设抛物线解析式为y=a(x+4)(x﹣2),
将B(0,﹣4)代入得:﹣4=﹣8a,即a= ,
则抛物线解析式为y= (x+4)(x﹣2)= x2+x﹣4;
(2)
解:过M作MN⊥x轴,
将x=m代入抛物线得:y= m2+m﹣4,即M(m, m2+m﹣4),
∴MN=| m2+m﹣4|=﹣ m2﹣m+4,ON=﹣m,
∵A(﹣4,0),B(0,﹣4),∴OA=OB=4,
∴△AMB的面积为S=S△AMN+S梯形MNOB﹣S△AOB
= ×(4+m)×(﹣ m2﹣m+4)+ ×(﹣m)×(﹣ m2﹣m+4+4)﹣ ×4×4
=2(﹣ m2﹣m+4)﹣2m﹣8
=﹣m2﹣4m
=﹣(m+2)2+4,
当m=﹣2时,S取得最大值,最大值为4.
【解析】(1)根据抛物线与x轴的交点A与C坐标设出抛物线的二根式方程,将B坐标代入即可确定出解析式;(2)过M作x轴垂线MN,三角形AMB面积=梯形MNOB面积+三角形AMN面积﹣三角形AOB面积,求出即可.
练习册系列答案
相关题目
【题目】我们知道:等腰三角形、平行四边形、菱形、双曲线、抛物线.这些都是我们在初中学习阶段学过的几何图形或函数的图象,那么从它们之中随机抽取两个,得到的都是中心对称图形的概率是( )
A.
B.
C.
D.1