题目内容
【题目】以下是一位同学所做的实数运算解题过程的一部分. ﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ +1﹣1+4× .
(1)指出上面解答过程中的错误,并写出正确的解答过程;
(2)若分式方程 +1= 的解与(1)中的最终结果相同,求a的值.
【答案】
(1)解:错误: ≠ ,cos60°≠ ,|﹣1|2017≠﹣1,
﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ ﹣1﹣1+4×
=﹣
(2)解:将x=﹣ 代入 +1= ,可得:
,
解得a=﹣1.
【解析】(1)根据有理数的乘方的运算方法,以及特殊角的三角函数值,指出上面解答过程中的错误,并写出正确的解答过程即可.(2)把(1)中的最终结果代入分式方程 +1= ,求出a的值是多少即可.
【考点精析】掌握零指数幂法则和分式方程的解是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解.
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据;
投资量x(万元) | 2 |
种植树木的利润y1(万元) | 4 |
种植花卉的利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额万元,种植花卉和树木共获利润W万元,求出W与m之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万元,在(2)的条件下,求出投资种植花卉的金额m的范围.