题目内容
【题目】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2 .
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(3)在(2)的条件下,t为何值时,四边形APQF是梯形?
【答案】
(1)解:由题意可知,当t=2(秒)时,OP=4,CQ=2,
在Rt△PCQ中,由勾股定理得:PC= =4,
∴OC=OP+PC=4+4=8,
又∵矩形AOCD,A(0,4),∴D(8,4).
点P到达终点所需时间为 =4秒,点Q到达终点所需时间为 =4秒,由题意可知,t的取值范围为:0<t<4.
(2)解:结论:△AEF的面积S不变化.
∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,
∴ ,即 ,解得CE= .
由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.
S=S梯形AOCF+S△FCE﹣S△AOE
= (OA+CF)OC+ CFCE﹣ OAOE
= [4+(8﹣t)]×8+ (8﹣t) ﹣ ×4×(8+ )
化简得:S=32为定值.
所以△AEF的面积S不变化,S=32.
(3)解:若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.
由PQ∥AF可得:△CPQ∽△DAF,
∴ ,即 ,化简得t2﹣12t+16=0,
解得:t1=6+2 ,t2=6﹣2 ,
由(1)可知,0<t<4,∴t1=6+2 不符合题意,舍去.
∴当t=(6﹣2 )秒时,四边形APQF是梯形.
【解析】(1)利用勾股定理求出PC的长度,然后利用矩形的性质确定D点的坐标;自变量的取值范围由动点到达终点的时间来确定;(2)本问关键是利用相似三角形与翻折变换的性质,求出S的表达式.注意求图形面积的方法S=S梯形AOCF+S△FCE﹣S△AOE . 经化简计算后,S=32为定值,所以S不变;(3)由四边形APQF是梯形,可得PQ∥AF,从而得到相似三角形△CPQ∽△DAF;再由线段比例关系求出时间t.
【考点精析】关于本题考查的梯形的定义和翻折变换(折叠问题),需要了解一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.