题目内容

【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长

【答案】
【解析】解:如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG.
∵AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵DC=DE,∠CDE=90°,
∴∠DCE=45°,
∴∠ACD+∠BCG=45°,
∵∠ACD=∠BCP,
∴∠GCP=∠GCD=45°,
在△GCD和△GCP中,

∴△GCD≌△GCP,
∴DG=PG,
∵∠PBG=∠PBC+∠CBG=90°,BG=6,PB=AD=8,
∴PG=DG= =10,
∴AB=AD+DG+BG=24,CM=AM=MB=12,DM=AM﹣AD=4,
∵∠DCM+∠CDM=90°,∠CDM+∠EDN=90°,
∴∠DCM=∠EDN,
在△CDM和△DEN中,
∴△CDM≌△DEN,
∴DM=NE=HN=4,CM=DN=AM,
∴AD=NM,DH=AD,
∵AF=FE,
∴DF= HE= =2
故答案为:
如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG,由△GCD≌△GCP,推出DG=PG,再证明△CDM≌△DEN,只要证明DF是△AHE中位线,求出HE即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网