题目内容
【题目】一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.
(1)甲、乙两车单独完成任务分别需要多少天?
(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.
【答案】
(1)解:设甲车单独完成任务需要x天,乙单独完成需要y天,
由题意可得: ,
解得: , (舍去),
经检验得,x、y是原方程组的解.
即甲车单独完成需要15天,乙车单独完成需要30天;
(2)解:设甲车每天租金为a元,乙车每天租金为b元,
则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:
,
解得: ,
①租甲乙两车需要费用为:65000元;
②单独租甲车的费用为:15×4000=60000元;
③单独租乙车需要的费用为:30×2500=75000元;
综上可得,单独租甲车租金最少
【解析】(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.
【考点精析】掌握分式方程的应用是解答本题的根本,需要知道列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).
练习册系列答案
相关题目