ÌâÄ¿ÄÚÈÝ
Èçͼ£¨1£©£¬ÔÚRt¡÷AOBÖУ¬¡ÏA=90¡ã£¬AB=6£¬OB=4
£¬¡ÏAOBµÄƽ·ÖÏßOC½»ABÓÚC£¬¹ýOµã×÷ÓëOB´¹Ö±µÄÖ±ÏßOF£®¶¯µãP´ÓµãB³ö·¢ÑØÕÛÏßBC¡úCO·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòÖÕµãOÔ˶¯£¬Í¬Ê±¶¯µãQ´ÓµãC³ö·¢ÑØÕÛCO¡úOF·½ÏòÒÔÏàͬµÄËÙ¶ÈÔ˶¯£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룬µ±µãPµ½´ïµãOʱP¡¢QͬʱֹͣÔ˶¯£®
£¨1£©ÇóOC¡¢BCµÄ³¤£»
£¨2£©Éè¡÷CPQµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£»
£¨3£©µ±µãPÔÚOCÉÏ¡¢µãQÔÚOFÉÏÔ˶¯Ê±£¬Èçͼ£¨2£©£¬PQÓëOA½»ÓÚµãE£¬µ±tΪºÎֵʱ£¬¡÷OPEΪµÈÑüÈý½ÇÐΣ¿Çó³öËùÓÐÂú×ãÌõ¼þµÄtµÄÖµ£®
3 |
£¨1£©ÇóOC¡¢BCµÄ³¤£»
£¨2£©Éè¡÷CPQµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£»
£¨3£©µ±µãPÔÚOCÉÏ¡¢µãQÔÚOFÉÏÔ˶¯Ê±£¬Èçͼ£¨2£©£¬PQÓëOA½»ÓÚµãE£¬µ±tΪºÎֵʱ£¬¡÷OPEΪµÈÑüÈý½ÇÐΣ¿Çó³öËùÓÐÂú×ãÌõ¼þµÄtµÄÖµ£®
£¨1£©ÔÚRt¡÷AOBÖУ¬¡ÏA=90¡ã£¬AB=6£¬OB=4
£¬
sin¡ÏAOB=
=
=
£¬Ôò¡ÏAOB=60¡ã£®
ÒòΪOCƽ·Ö¡ÏAOB£¬¡à¡ÏAOC=30¡ã£¬OA=
OB=2
£®
ÔÚRt¡÷AOCÖУ¬¡ÏA=90¡ã£¬¡ÏAOC=30¡ã£¬AC=
=2£¬OC=2AC=4£¬
ËùÒÔBC=AB-AC=4£®
£¨2£©±¾Ìâ·ÖÈýÖÖÇé¿ö£º
¢Ùµ±µãPÔÚBCÉÏ¡¢µãQÔÚOCÉÏÔ˶¯Ê±£¬£¨0£¼t£¼4£©Èçͼ£¨1£©CP=4-t£¬CQ=t
¹ýµãP×÷PM¡ÍOC½»OCµÄÑÓ³¤ÏßÓÚµãM£®
ÔÚRt¡÷CPMÖУ¬¡ÏM=90¡ã£¬¡ÏMCP=60¡ã
¡àCM=
PC=
(4-t)£¬PM=
CM=
(4-t)£¬
¡ßS¡÷CPQ=
QC•PM£¬
¡àS=
¡Át•
(4-t)=
t(4-t)£®
¢Úµ±t=4ʱ£¬µãPÓëµãCÖغϣ¬µãQÓëµãOÖغϣ¬´Ëʱ£¬²»Äܹ¹³É¡÷CPQ£»
¢Ûµ±µãPÔÚOCÉÏ¡¢µãQÔÚOQÉÏÔ˶¯Ê±¼´£¨4£¼t¡Ü8£©£¬
Èçͼ£¨2£©PC=t-4£¬OQ=t-4£¬
¹ýµãQ×÷QN¡ÍOC½»OCÓÚµãN£¬
ÔÚRt¡÷OQNÖУ¬¡ÏQNO=90¡ã£¬¡ÏQON=60¡ã£¬ON=
OQ=
(t-4)£¬QN=
ON=
(t-4)£¬
ËùÒÔS=
PC•QN=
¡Á(t-4)•
(t-4)=
(t-4)2£¬
×ÛÉÏËùÊöS=
£®
£¨3£©¡÷OPEΪµÈÑüÈý½ÇÐηÖÈýÖÖÇé¿ö£º
¢Ùµ±OP=OEʱ£¬OQ=t-4£¬OP=8-t
¹ýµãE×÷EH¡ÍOQÓÚµãH£¬ÔòQH=EH=
OE£¬OH=
OE£¬
¡àOQ=HQ+OH=(
+
)OE=t-4£®¡àOE=
=OP=8-t£¬½âµÃ£ºt=
£¬
¢Úµ±EP=EOʱ£¬Èçͼ£º¡÷OPQΪ30¡ãµÄÖ±½ÇÈý½ÇÐΣ¬OQ=
OP£¬
(8-t)=t-4£¬t=
£®
¢Ûµ±PE=POʱ£¬PE¡ÎOF£¬PE²»ÓëOFÏཻ£¬¹ÊÉáÈ¥£®
×ÛÉÏËùÊö£¬µ±t=
ºÍt=
ʱ£¬¡÷OPEΪµÈÑüÈý½Ç£®
3 |
sin¡ÏAOB=
AB |
OB |
6 | ||
4
|
| ||
2 |
ÒòΪOCƽ·Ö¡ÏAOB£¬¡à¡ÏAOC=30¡ã£¬OA=
1 |
2 |
3 |
ÔÚRt¡÷AOCÖУ¬¡ÏA=90¡ã£¬¡ÏAOC=30¡ã£¬AC=
OA | ||
|
ËùÒÔBC=AB-AC=4£®
£¨2£©±¾Ìâ·ÖÈýÖÖÇé¿ö£º
¢Ùµ±µãPÔÚBCÉÏ¡¢µãQÔÚOCÉÏÔ˶¯Ê±£¬£¨0£¼t£¼4£©Èçͼ£¨1£©CP=4-t£¬CQ=t
¹ýµãP×÷PM¡ÍOC½»OCµÄÑÓ³¤ÏßÓÚµãM£®
ÔÚRt¡÷CPMÖУ¬¡ÏM=90¡ã£¬¡ÏMCP=60¡ã
¡àCM=
1 |
2 |
1 |
2 |
3 |
| ||
2 |
¡ßS¡÷CPQ=
1 |
2 |
¡àS=
1 |
2 |
| ||
2 |
| ||
4 |
¢Úµ±t=4ʱ£¬µãPÓëµãCÖغϣ¬µãQÓëµãOÖغϣ¬´Ëʱ£¬²»Äܹ¹³É¡÷CPQ£»
¢Ûµ±µãPÔÚOCÉÏ¡¢µãQÔÚOQÉÏÔ˶¯Ê±¼´£¨4£¼t¡Ü8£©£¬
Èçͼ£¨2£©PC=t-4£¬OQ=t-4£¬
¹ýµãQ×÷QN¡ÍOC½»OCÓÚµãN£¬
ÔÚRt¡÷OQNÖУ¬¡ÏQNO=90¡ã£¬¡ÏQON=60¡ã£¬ON=
1 |
2 |
1 |
2 |
3 |
| ||
2 |
ËùÒÔS=
1 |
2 |
1 |
2 |
| ||
2 |
| ||
4 |
×ÛÉÏËùÊöS=
|
£¨3£©¡÷OPEΪµÈÑüÈý½ÇÐηÖÈýÖÖÇé¿ö£º
¢Ùµ±OP=OEʱ£¬OQ=t-4£¬OP=8-t
¹ýµãE×÷EH¡ÍOQÓÚµãH£¬ÔòQH=EH=
1 |
2 |
| ||
2 |
¡àOQ=HQ+OH=(
1 |
2 |
| ||
2 |
2(t-4) | ||
1+
|
12+4
| ||
3 |
¢Úµ±EP=EOʱ£¬Èçͼ£º¡÷OPQΪ30¡ãµÄÖ±½ÇÈý½ÇÐΣ¬OQ=
1 |
2 |
1 |
2 |
16 |
3 |
¢Ûµ±PE=POʱ£¬PE¡ÎOF£¬PE²»ÓëOFÏཻ£¬¹ÊÉáÈ¥£®
×ÛÉÏËùÊö£¬µ±t=
12+4
| ||
3 |
16 |
3 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿