题目内容
【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第天生产空调台,直接写出与之间的函数解析式,并写出自变量的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第天的利润为元,试求与之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
【答案】(1)y=40+2x(1≤x≤10);(2),第5天,46000元.
【解析】
试题分析:(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;
(2)根据基本等量关系:利润=(每台空调订购价﹣每台空调成本价﹣增加的其他费用)×生产量即可得出答案.
试题解析:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,
∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);
(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,
∵1840>0,∴W随x的增大而增大,
∴当x=5时,W最大值=1840×5+36800=46000;
当5<x≤10时,
W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,
此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,
∴当x=6时,W最大值=45760元.
∵46000>45760,
∴当x=5时,W最大,且W最大值=46000元.
综上所述:.
【题目】行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
刹车距离/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?