题目内容
【题目】如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.
【答案】2π+2﹣4
【解析】
如图,连接EC.首先证明△BEC是等腰直角三角形,根据S阴=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD计算即可.
如图,连接EC.
∵四边形ABCD是矩形,
∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,
∴BE===2,
∴BC=BE=2,
∴∠BEC=∠BCE=45°,
∴∠ECD=45°,
∴S阴=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)
=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD
=+×2×2﹣2×2,
=2π+2﹣4.
故答案为:2π+2﹣4.
练习册系列答案
相关题目