题目内容
【题目】如图,在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.
(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.
【答案】(1)证明见解析;(2)
【解析】试题(1)由平行四边形的对角线互相平分得到△AOB的两条边OA、OB的长度,则根据勾股定理的逆定理判定∠AOB=90°,即平行四边形的对角线互相垂直平分,故四边形ABCD是菱形.
(2)根据菱形的不变性,用不同方法求面积:平行四边形的面积=菱形的面积,可求解.
试题解析:(1)证明:∵在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,
∴AO=AC=3,BO=BD=4,
∵AB=5,且32+42=52,
∴AO2+BO2=AB2,
∴△AOB是直角三角形,且∠AOB=90°,
∴AC⊥BD,
∴四边形ABCD是菱形;
(2)解:如图所示:
∵四边形ABCD是菱形,
∴BC=AB=5,
∵S△ABC=ACBO=BCAH,
∴×6×4=×5×AH,
解得:AH=.
练习册系列答案
相关题目