题目内容

【题目】如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )

A.4km
B.2 km
C.2 km
D.( +1)km

【答案】C
【解析】解:如图,过点A作AD⊥OB于D.
在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,
∴AD= OA=2.
在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,
∴BD=AD=2,
∴AB= AD=2
即该船航行的距离(即AB的长)为2 km.
故选:C.

过点A作AD⊥OB于D.先解Rt△AOD,得出AD= OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB= AD=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网