题目内容
【题目】如图①,O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一三角尺的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角尺绕点O逆时针旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON的度数;
(2)将图①中的三角尺绕点O以每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);
(3)将图①中的三角尺绕点O顺时针旋转至图③,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.
【答案】(1) 35°;(2) 11或47;(3)见解析.
【解析】
(1)根据角平分线的定义以及直角的定义,即可求得∠BON的度数;
(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;
(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°-∠AON,∠NOC=70°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.
(1)如图2,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°,
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°;
(2)分两种情况:
①如图2,∵∠BOC=110°
∴∠AOC=70°,
当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,5t=55°
解得t=11(s);
②如图3,当NO平分∠AOC时,∠NOA=35°,
∴∠AOM=55°,
即逆时针旋转的角度为:180°+55°=235°,
由题意得,5t=235°,
解得t=47(s),
综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;
故答案为:11或47;
(3)∠AOM-∠NOC=20°.
理由:∵∠MON=90°,∠AOC=70°,
∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,
∴∠AOM与∠NOC的数量关系为:∠AOM-∠NOC=20°.