题目内容
【题目】如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)
【答案】解:过点D作DH⊥BC于点M,如图所示:
则四边形DHCE是矩形,DH=EC,DE=HC,
设建筑物BC的高度为xm,则BH=(x﹣5)m,
在Rt△DHB中,∠BDH=30°,
∴DH= (x﹣5),AC=EC﹣EA= (x﹣5)﹣10,
在Rt△ACB中,∠BAC=50°,tan∠BAC= ,
∴x=tan50°[ (x﹣5)],
解得:x≈21,
答:建筑物BC的高约为21m.
【解析】利用三角函数测物体的高,由四边形DHCE是矩形,得到DH=EC,DE=HC,在Rt△DHB中,∠BDH=30°,得到DH,在Rt△ACB中,∠BAC=50°,由三角函数值求出tan∠BAC的值,得到建筑物BC的高.
练习册系列答案
相关题目