题目内容
【题目】在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是ycm2,设金色纸边的宽为xcm,要求纸边的宽度不得少于1cm,同时不得超过2cm.
(1)求出y关于x的函数解析式,并直接写出自变量的取值范围;
(2)此时金色纸边的宽应为多少cm时,这幅挂图的面积最大?求出最大面积的值.
【答案】(1)y=4x2+260x+4000(1≤x≤2);(2)金色纸边的宽为2cm时,这幅挂图的面积最大,最大面积的值为4536cm2.
【解析】
(1)用含x的代数式表示出镶纸边后矩形的长和宽,根据矩形的面积公式即可得出y关于x的函数解析式,结合题意标明x的取值范围即可;
(2)根据二次函数的性质确定在自变量的取值范围内函数的单调性,由此即可解决最值问题.
(1)镶金色纸边后风景画的长为(80+2x)cm,宽为(50+2x)cm,
∴y=(80+2x)(50+2x)=4x2+260x+4000(1≤x≤2).
(2)∵二次函数y=4x2+260x+4000的对称轴为x=﹣,
∴在1≤x≤2上,y随x的增大而增大,
∴当x=2时,y取最大值,最大值为4536.
答:金色纸边的宽为2cm时,这幅挂图的面积最大,最大面积的值为4536cm2.
练习册系列答案
相关题目