题目内容
【题目】将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,.
(1)求GC的长;
(2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H、C作AB的垂线,垂足分别为M、N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.
(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.
【答案】(1)2;(2)DM=DN;(3)
【解析】
(1)解直角三角形求出AC、AG即可解决问题;
(2)由直角三角形斜边上的中线等于斜边的一半,得到CD=BD=AD.再由∠B=60°,得到△BDC为等边三角形,从而可以证明∠HDA=30°,进一步得到 AH=HD,由等腰三角形的性质得到MD=AM,ND=NB.即可得到结论;
(3)如图3中,作GK∥DE交AB由K.求出AK的值即可解决问题.
(1)如图1.
在Rt△ABC中,∵BC=2,∠B=60°,∴AC=BCtan60°=6,AB=2BC=4.
∵DF是线段AB的垂直平分线,∴AD=BD=2.
在Rt△ADG中,AG4,∴CG=AC=AG=6﹣4=2.
(2)如图2中,结论:DM=DN.
理由:∵△ABC为直角三角形,D为斜边AB的中点,∴CD=BD=AD.
又∠B=60°,∴△BDC为等边三角形,∴∠CDB=60°.
又∠EDF=90°,∴∠HDA=30°.
∵∠A=90°﹣∠B=30°,∴AH=HD,又HM⊥AD,∴MD=AM.
在等边三角形 BCD中,CN⊥BD,∴ND=NB.
又AD=BD,∴MD=ND.
(3)如图3中,作GK∥DE交AB由K.
在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.
则AH=AGcos30°=2,可得AK=2AH=4,此时K与B重合,∴DD′=DB=2.