题目内容
【题目】如图,AB是⊙O的直径,点A,C,D在⊙O上,过D作PF∥AC交⊙O于F,交AB于E,且∠BPF=∠ADC.
(1)判断直线BP和⊙O的位置关系,并说明你的理由;
(2)当⊙O的半径为 ,AC=2,BE=1时,求BP的长.
【答案】
(1)解:直线BP和⊙O相切,
理由:连接BC,
∵AB是⊙O直径,
∴∠ACB=90°,
∵PF∥AC,
∴BC⊥PF,
则∠PBC+∠BPF=90°,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
∴∠PBC+∠ABC=90°,
即∠PBA=90°,
∴PB⊥AB,
∵AB是直径,
∴直线BP和⊙O相切
(2)解:由已知,得∠ACB=90°,
∵AC=2,AB=2 ,
∴由勾股定理得:BC=4,
∵∠BPF=∠ADC,∠ADC=∠ABC,
∴∠BPF=∠ABC,
由(1),得∠ABP=∠ACB=90°,
∴△ACB∽△EBP,
∴ = ,
解得BP=2,
即BP的长为2.
【解析】(1)由AB是⊙O的直径及PF∥AC,构造圆周角是直角,因此连接BC,易得到BC⊥PF,从而证得∠PBC+∠BPF=90°,再根据同弧所对的圆周角相等,通过等量代换,得出∠PBA=90°,就可证得结论。
(2)根据已知条件在Rt△ABC中,根据勾股定理可以求得BC的长,再证明△ACB∽△EBP,得对应边成比例,建立方程,解方程即可求解。
【考点精析】掌握勾股定理的概念和圆周角定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
练习册系列答案
相关题目