题目内容

【题目】某风景区内的公路如图1所示,景区内有免费的班车,从运河码头出发,沿该公路开往薰衣草庄园,途中停靠生态文化园(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从运河码头发车.小聪周末到该风景区游玩,上午7:40到达运河码头,因还没到班车发车时间,于是从景区运河码头出发,沿该公路步行25分钟后到达生态文化园.离运河码头的路程(米)与时间(分)的函数关系如图2所示.

1)求第一班车离运河码头的路程(米)与时间(分)的函数表达式.

2)求第一班车从运河码头到达生态文化园所需的时间.

3)小聪在生态文化园游玩40分钟后,想坐班车到薰衣草庄园,则小聪最早能够坐上第几班车?如果他坐这班车到薰衣草庄园,比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

【答案】1;(2)第一班车从运河码头到达生态文化园所需时间10分钟;(3)比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了7分钟.

【解析】

1)设y=kx+b,运用待定系数法求解即可;
2)把y=1500代入(1)的解析式求出x即可;
3)设小聪坐上了第n班车,30-25+10n-1)≥40,解得n4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.

解:(1)由题意得,可设函数表达式为:

代入,得,解得

∴第一班车离运河码头的路程(米)与时间(分)的函数表达为

2)把代入,解得

(分),

∴第一班车从运河码头到达生态文化园所需时间10分钟;

3)设小聪坐上了第班车,则

,解得

∴小聪坐上了第5班车.

等车的时间为5分钟,坐班车所需时间为:(分),

步行所需时间:(分),

(分).

∴比他在生态文化园游玩结束后立即步行到薰衣草庄园提早了7分钟.

练习册系列答案
相关题目

【题目】问题提出:将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?

问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律

探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有1+2+1=2×1+2+3=12条线段.

探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有1+2+3+1+2+1=3×1+2+3+4=30条线段.

探究三:

请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?

(画出示意图,并写出探究过程)

问题解决:

请你仿照上面的方法,探究将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)

实际应用:

将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网