题目内容
【题目】问题提出:将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?
问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律
探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有3×(1+2+1)=2×(1+2+3)=12条线段.
探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30条线段.
探究三:
请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?
(画出示意图,并写出探究过程)
问题解决:
请你仿照上面的方法,探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)
实际应用:
将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
【答案】探究三:结点个数为10个,线段数为60条;问题解决:结点个数为个,线段数为
条;实际应用:结点个数为465个,线段数为14880条
【解析】
探究三:根据探究一和探究二的方法求解即可;
问题解决:根据探究一、探究二、探究三的过程总结规律即可;
实际应用:根据“问题解决”中总结的规律求解即可.
解:探究三:如图3中,
连接边长为4的正三角形三条边的对应四等分点,从上往下:共有1+2+3+4+5=15个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,第四层有4个,共有1+2+3+4=10个,线段数为3×10=30条;边长为2的正三角形有1+2+3=6个,线段数为3×6=18条,边长为3的正三角形有3个,线段数为3×3=9,边长为4的正三角形有1个,线段数为3条,总共有3×(1+2+3+4+1+2+3+3+1)=4×(1+2+3+4+5)=60条线段.
∴该三角形被剖分的网格中的结点个数为10个,线段数为60条;
问题解决:探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,从上往下:共有1+2+3+4+5+…n=个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,第四层有4个,第n层有n个,共有(1+2+3+4+…+n)个,线段数为3×(1+2+3+4+…+n)条;边长为2的正三角形有1+2+3=6个,线段数为3×6=18条,边长为3的正三角形有3个,线段数为3×3=9,边长为4的正三角形有1个,线段数为3条,…边长为n的三角形1个,线段数为3,总共有n(1+2+3+…+n+1)=
.
∴该三角形被剖分的网格中的结点个数为个,线段数为
条;
实际应用:将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数为=465个结点个数,线段总数=
=14880条线段.
该三角形被剖分的网格中的结点个数为465个,线段数为14880条.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】根据下表回答问题:
x | 16 | 16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 |
x2 | 256 | 259.21 | 262.44 | 265.69 | 268.96 | 272.25 | 175.56 | 278.89 | 282.24 |
(1)272.25的平方根是
(2) = ,
= ,
=
(3)设 的整数部分为a,求﹣4a的立方根.