题目内容

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;②

(2)请计算甲六次测试成绩的方差;

(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.

【答案】(1)9,9;(2)(3)推荐甲参加比赛合适.

【解析】

试题分析:(1)根据中位数的定义先把这组数据从小到大排列,再找出最中间两个数的平均数即可求出①;根据平均数的计算公式即可求出②;

(2)根据方差的计算公式S2=[(x12+(x22+…+(xn2]代值计算即可;

(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.

解:(1)甲的中位数是:=9;

乙的平均数是:(10+7+10+10+9+8)÷6=9;

故答案为:9,9;

(2)S2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=

(3)=,S2<S2

推荐甲参加比赛合适.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网