题目内容
【题目】如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.
(1)根据你的判断:BD是⊙O的切线吗?为什么?.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为10,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.
【答案】(1)BD是⊙O的切线,理由见解析;(2)见解析.
【解析】
(1)BD是⊙O的切线.先连接OB,由于AC是直径,那么∠ABC=90°,于是∠1+∠C=90°,而OA=OB,可得∠1=∠2,结合∠3=∠C,易得∠2+∠3=90°,从而可证DB是⊙O的切线;
(2)由于cos∠BFA=,那么,利用圆周角定理可知∠E=∠C,∠4=∠5,易证△EBF∽△CAF,于是,从而易求△ACF的面积.
(1)BD是⊙O的切线.
理由:如图所示,连接OB,
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠1+∠C=90°,
∵OA=OB,
∴∠1=∠2,
∴∠2+∠C=90°,
∵∠3=∠C,
∴∠2+∠3=90°,
∴DB是⊙O的切线;
(2)在Rt△ABF中,
∵cos∠BFA=,
∴,
∵∠E=∠C,∠4=∠5,
∴△EBF∽△CAF,
∴,
即,
解之得:S△ACF=22.5.
【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“铅笔”的频率 (结果保留小数点后两位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.