题目内容
【题目】已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).
(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;
(Ⅱ)抛物线与x轴相交于不同的两点A,B.
①求m的取值范围;
②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△PAB面积的最大值,并求出相对应的m的值.
【答案】(1)(﹣1,0)或(2,0);(2)①m≠0且m≠;②
【解析】
(1)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,然后解这个一元二次方程即可;
(2)①根据题意得出△=(1-2m)2-4×m×(1-3m)=(1-4m)2>0,得出1-4m≠0,解不等式即可;
②y=m(x2-2x-3)+x+1,故只要x2-2x-3=0,那么y的值便与m无关,解得x=3或x=-1(舍去,此时y=0,在坐标轴上),故定点为(3,4);由|AB|=|xA-xB|得出|AB|=|-4|,由已知条件得出≤<4,得出0<|-4|≤,因此|AB|最大时,|-4|=,解方程得出m=8,或m=(舍去),即可得出结果.
解:(Ⅰ)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,
解得x1=﹣1,x2=2,
故该抛物线与x轴的公共点的坐标为(﹣1,0)或(2,0);
(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;
当m≠0时,
∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,
∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,
∴1﹣4m≠0,
∴m≠,
∴m的取值范围为m≠0且m≠;
②|AB|=|xA﹣xB|=====||=|﹣4|,
∵<m≤8,
∴≤<4,
∴﹣≤﹣4<0,
∴0<|﹣4|≤,
∴|AB|最大时,||=,
解得:m=8,或m=(舍去),
∴当m=8时,|AB|有最大值,
此时△ABP的面积最大,没有最小值,
则面积最大为: |AB|yP=××4=.