题目内容
【题目】若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A. 抛物线开口向下
B. 抛物线与x轴的交点为(﹣1,0),(3,0)
C. 当x=1时,y有最大值为0
D. 抛物线的对称轴是直线x=
【答案】D
【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;
B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(2,0),B选项错误;
C、由抛物线开口向上,可得出y无最大值,C选项错误;
D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
综上即可得出结论.
解:A、∵a=1>0,
∴抛物线开口向上,A选项错误;
B、∵抛物线y=x2-3x+c与y轴的交点为(0,2),
∴c=2,
∴抛物线的解析式为y=x2-3x+2.
当y=0时,有x2-3x+2=0,
解得:x1=1,x2=2,
∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;
C、∵抛物线开口向上,
∴y无最大值,C选项错误;
D、∵抛物线的解析式为y=x2-3x+2,
∴抛物线的对称轴为直线x=-=-=,D选项正确.
故选:D.
练习册系列答案
相关题目