题目内容
【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“铅笔”的频率 (结果保留小数点后两位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.
【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36
【解析】
(1)利用频率估计概率求解;
(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.
(1)转动该转盘一次,获得铅笔的概率约为0.7;
故答案为: 0.7
(2)4000×0.5×0.7+4000×3×0.3=5000,
所以该商场每天大致需要支出的奖品费用为5000元;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,
则4000×3×+4000×0.5(1﹣)=3000,解得n=36,
所以转盘上“一瓶饮料”区域的圆心角应调整为36度.
故答案为36.