题目内容

在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分线段AB,
(1)试找出图中相等的线段,并说明理由.
(2)若DE=1cm,BD=2cm,求AC的长.
(1)图中相等的线段有AD=BD,CD=DE,BE=AE=BC,
理由是:∵DE垂直平分线段AB,
∴DE是线段AB的垂直平分线,
∴AD=BD,
∵∠C=90°,
∴DC⊥BC,
∵DE⊥BA,BD平分∠ABC,
∴CD=DE,
由勾股定理得:BE2=BD2-DE2,BC2=BD2-CD2
∴BE=BC,
∵E为AB中点,
∴AE=BE=BC;
(2)∵由(1)知DE=DC=1cm,BD=AD=2CM,
∴AC=AD+DC=3cm.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网