题目内容

【题目】如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.

(1)求证:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的长.

【答案】
(1)

证明:

∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,

∴DE=DF,∠DEB=∠DFC=90°,

在RT△DEB和RT△DFC中,

∴△DEB≌△DFC,

∴∠B=∠C,

∴AB=AC


(2)

解:∵AB=AC,BD=DC,

∴AD⊥BC,

在RT△ADC中,∵∠ADC=90°,AD=2 ,∠DAC=30°,

∴AC=2CD,设CD=a,则AC=2a,

∵AC2=AD2+CD2

∴4a2=a2+(2 2

∵a>0,

∴a=2,

∴AC=2a=4.


【解析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网