题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】
根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=-1,x=2对应y值的正负判断即可.
由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,
∵对称轴在y轴右侧,且-=1,即2a+b=0,
∴a与b异号,即b<0,
∴abc>0,选项①正确;
∵二次函数图象与x轴有两个交点,
∴△=b2-4ac>0,即b2>4ac,选项②错误;
∵原点O与对称轴的对应点为(2,0),
∴x=2时,y<0,即4a+2b+c<0,选项③错误;
∵x=-1时,y>0,
∴a-b+c>0,
把b=-2a代入得:3a+c>0,选项④正确,
故选:B.
练习册系列答案
相关题目
【题目】如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 | 4.8 | 5.2 | 4.6 | 0 |
(2)如图,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为___________cm.