题目内容
【题目】如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 | 4.8 | 5.2 | 4.6 | 0 |
(2)如图,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为___________cm.
【答案】(1)见解析;(2)见解析;(3)2.0或3.7.
【解析】
(1) 设AC的长为2cm时,DE为直径,即可求出
完成表格即可.
(2)根据(1)中的表格,描点,连线,即可画出该函数的图象;
(3)观察图象,即可得出△ADE的面积为4cm2,△ADE的面积为4cm2,即可求出AC的长.
本题答案不唯一,如:
(1)
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 | 4.0 | 4.8 | 5.2 | 4.6 | 0 |
(2)
(3) 当△ADE的面积为4cm2时,AC的长度约为2.0或3.7.
故答案为:2.0或3.7.
【题目】电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 |
注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是______;
电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,可使改变投资策略后总的好评率达到最大?
答:______.