题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
【答案】B.
【解析】
试题解析:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N.
∵∠ACB=∠DEB=90°,
∴DE∥AC,
∵AD=DB,
∴CE=EB,
∴DE=AC=CA′,
∵DE∥CA′,
∴,
∵DM∥BC,AD=DB,
∴AM=MC,AN=NP,
∴DM=BC=CE=EB,MN=PC,
∴MN=PE,ND=PC,
在△DNQ和△CPQ中,
,
∴△DNQ≌△CPQ,
∴NQ=PQ,
∵AN=NP,
∴AQ=3PQ.
故选B.
练习册系列答案
相关题目