题目内容
【题目】如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB.若AB=10,CD=6,则DE的长为 ( )
A.B.C.6D.
【答案】A
【解析】
设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,根据垂径定理得出CH=DH,DM=EM,BN=CN,利用勾股定理求得OH,即可求得BH,进而求得BC,求得ON,根据三角形函数求得DG,因为MN=DG,即可求得OM,根据勾股定理求得DM,得出DE.
解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,
∵DE∥BC,
∴MN⊥BC,DG⊥DE,
∴四边形DMNG是矩形,
∴DG=MN,
∵OM⊥DE,ON⊥BC,
∴DM=EM=DE,BN=CN,
∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.
∴CH=DH=CD=3,
∴OH==4,
∴BH=9,
∴BC==3,
∴BN=BC=,
∴ON=,
∵sin∠BCH=,即,
∴DG=,
∴MN=DG=,
∴OM=MN-ON=,
∴DM==,
∴DE=2DM=.
故选A.
练习册系列答案
相关题目