题目内容
【题目】某商店从机械厂购进甲、乙两种零件进行销售,若甲种零件每件的进价是乙种零件每件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件的数量多4件.
(1)求每件甲种零件和每件乙种零件的进价分别为多少元?
(2)若该商店计划购进甲、乙两种零件共110件,准备将零件批发给零售商. 甲种零件的批发价是每件100元,乙种零件的批发价是每件130元,该商店计划将这批产品全部售出从零售商处获利不低于3000元,那么该商店最多购进多少件甲种零件?
【答案】(1)每件甲种零件的进价为80元,每件乙种零件的进价为100元.(2)该商店最多购进30件甲种零件
【解析】
(1)设甲种零件的单价为x元/件,则乙种零件的单价为0.8x元/件,根据等量关系:1600元购进的甲种零件的数量比1600元购进的乙种零件数量多4件列出方程,解方程即可得到所求答案;
(2)设购进甲种零件的数量为a件,则购进乙种零件的数量为(110-a)件,结合(1)中所得购进两种零件的单价和已知条件列出不等式,解不等式求得a的最大整数解,即可得到所求答案.
(1)设每件乙种零件的进价为x元,则每件甲种零件的进价为元,由题意得:
解得x=100 ,
经检验x=100是所列方程的解,
∴=80.
答:每件甲种零件的进价为80元,每件乙种零件的进价为100元.
(2)设该商店购进甲a件甲种零件,根据题意可得:
≥3000,
解得a≤30,
∴a最大取30.
答:该商店最多购进30件甲种零件.
练习册系列答案
相关题目