题目内容

【题目】如图,在梯形ABCD中,AD∥BC,E是CD的中点,连接AE并延长交BC的延长线于点F,且AB⊥AE.若AB=5,AE=6,则梯形上下底之和为

【答案】13
【解析】解:∵在梯形ABCD中,AD∥BC,
∴∠F=∠DAE,∠ECF=∠D,
∵E是CD的中点,
∴DE=CE,
在△ADE和△FCE中,

∴△ADE≌△FCE(AAS),
∴CF=AD,EF=AE=6,
∴AF=AE+EF=12,
∵AB⊥AE,
∴∠BAF=90°,
∵AB=5,
∴BF= =13,
∴AD+BC=BC+CF=BF=13.
所以答案是:13.
【考点精析】关于本题考查的勾股定理的概念和梯形的定义,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网