题目内容
【题目】如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( )
A.3cm
B.4cm
C.2.5cm
D.2cm
【答案】A
【解析】解:∵菱形ABCD的周长为24cm,
∴边长AB=24÷4=6cm,
∵对角线AC、BD相交于O点,
∴BO=DO,
又∵E是AD的中点,
∴OE是△ABD的中位线,
∴OE= AB= ×6=3cm.
故选A.
【考点精析】利用三角形中位线定理和菱形的性质对题目进行判断即可得到答案,需要熟知连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
练习册系列答案
相关题目