题目内容
【题目】有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )
A. 6B. 7C. 8D. 9
【答案】C
【解析】
设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.
解:
设2为a,3为b,
则根据5张边长为2的正方形纸片的面积是5a2,
4张边长分别为2、3的矩形纸片的面积是4ab,
6张边长为3的正方形纸片的面积是6a2,
∵a2+4ab+4b2=(a+2b)2,(b>a)
∴拼成的正方形的边长最长可以为a+2b=2+6=8,
故选:C.
练习册系列答案
相关题目