题目内容
【题目】如图(1),在豫西南邓州市大十字街西南方,耸立着一座古老建筑-福胜寺梵塔,建于北宋天圣十年(公元1032年),学完了三角函数知识后,某校“数学社团”的刘明和王华决定用自己学到的知识测量“福胜寺梵塔”的高度.如图(2),刘明在点C处测得塔顶B的仰角为45°,王华在高台上的点D处测得塔顶B的仰角为40°,若高台DE高为5米,点D到点C的水平距离EC为1.3米,且A、C、E三点共线,求该塔AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)
【答案】38米
【解析】
作DM⊥AB于M,交CB于F,CG⊥DM于G,根据矩形的性质得到CG=DE=5,DG=EC=1.3,设FM=x米,根据正切的定义用x表示出DM、BM,结合图形列出方程,解方程得到答案.
解:如图,作DM⊥AB于M,交CB于F,CG⊥DM于G,则四边形DECG为矩形,
∴CG=DE=5,DG=EC=1.3,
设FM=x米,由题意得,∠BDM=40°,∠BFM=∠BCA=45°,
∴∠CFG=45°,BM=FM=x,
∴GF=GC=5,
∴DF=DG+GF=5+1.3=6.3,
在Rt△BDM中,tan∠BDM=,
∴DM=,
由题意得,DM﹣DF=FM,即,
解得,x≈33.2,则BA=BM+AM=38.2≈38(米),
答:该塔AB的高度约为38米.
练习册系列答案
相关题目