题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是( )
A.AQ= PQ
B.AQ=3PQ
C.AQ= PQ
D.AQ=4PQ
【答案】B
【解析】如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N.
∵∠ACB=∠DEB=90°,
∴DE∥AC,
∵AD=DB,
∴CE=EB,
∴DE= AC= CA′,
∵DE∥CA′,
∴ = = ,
∵DM∥BC,AD=DB,
∴AM=MC,AN=NP,
∴DM= BC=CE=EB,MN= PC,
∴MN=PE,ND=PC,
在△DNQ和△CPQ中,
,
∴△DNQ≌△CPQ,
∴NQ=PQ,
∵AN=NP,
∴AQ=3PQ.
所以答案是:B.
【考点精析】掌握轴对称-最短路线问题是解答本题的根本,需要知道已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.
练习册系列答案
相关题目
【题目】永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)请建立该水库水位y与日期x之间的函数模型;
(2)请用求出的函数表达式预测该水库今年4月6日的水位;
(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?