题目内容
【题目】用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页) | 5 | 10 | 20 | 30 | … |
甲复印店收费(元) | 0.5 | 2 | … | ||
乙复印店收费(元) | 0.6 | 2.4 | … |
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1 , y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
【答案】
(1)1;3;1.2;3.3
(2)y1=0.1x(x≥0);
y2= ;
(3)顾客在乙复印店复印花费少;
当x>70时,y1=0.1x,y2=0.09x+0.6,
∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
设y=0.01x﹣0.6,
由0.01>0,则y随x的增大而增大,
当x=70时,y=0.1
∴x>70时,y>0.1,
∴y1>y2,
∴当x>70时,顾客在乙复印店复印花费少.
【解析】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2; 当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;
所以答案是1,3;1.2,3.3;
练习册系列答案
相关题目