题目内容
【题目】已知二次函数y=mx2+(1﹣2m)x+1﹣3m.
(1)当m=2时,求二次函数图象的顶点坐标;
(2)已知抛物线与x轴交于不同的点A、B.
①求m的取值范围;
②若3≤m≤4时,求线段AB的最大值及此时二次函数的表达式.
【答案】(1)(,﹣);(2)①m≠0且m≠;②AB的最大值为15,y=4x2﹣7x﹣11
【解析】
(1)当m=2时,y=mx2+(1﹣2m)x+1﹣3m=x2﹣3x﹣5,即可求解;
(2)①△>0且m≠0,即可求解;②y=mx2+(1﹣2m)x+1﹣3m=(x﹣3m+1)(x+m),令y=0,则x=3m﹣1或﹣m,即可求解.
(1)当m=2时,y=mx2+(1﹣2m)x+1﹣3m=x2﹣3x﹣5,
函数的对称轴为直线x=﹣,
当x=时,y=x2﹣3x﹣5=﹣,
故顶点坐标为(,﹣);
(2)①△=b2﹣4ac=(1﹣2m)2﹣4m(1﹣3m)=(4m﹣1)2>0,
故4m﹣1≠0,解得:m≠ ;
而y=mx2+(1﹣2m)x+1﹣3m为二次函数,故m≠0,
故m的取值范围为:m≠0且m≠;
②y=mx2+(1﹣2m)x+1﹣3m=(x﹣3m+1)(x+m),
令y=0,则x=3m﹣1或﹣m,
则AB=|3m﹣1+m|=|4m﹣1|,
∵3≤m≤4,
∴12≤4m﹣1≤15,
故AB的最大值为15,
此时m=4,
当m=4时,y=mx2+(1﹣2m)x+1﹣3m=4x2﹣7x﹣11.
【题目】某市将开展以“走进中国数学史”为主题的知识凳赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:
成绩等级 | 频数(人数) | 频率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合计 | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形统计图中,求“C等级”所对应心角的度数;
(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.