题目内容
【题目】已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.
(1)求这个反比例函数的解析式;
(2)四边形OABC的面积.
【答案】
(1)解:过C作CM⊥x轴于M,则∠CMO=90°,
∵OC=2 ,sin∠AOC= = ,
∴MC=4,
由勾股定理得:OM= =2,
∴C的坐标为(2,4),
代入y= 得:k=8,
所以这个反比例函数的解析式是y=
(2)解:
过B作BE⊥x轴于E,则BE=CM=4,AE=OM=2,过D作DN⊥x轴于N,
∵D为AB的中点,
∴DN= =2,AN= =1,
把y=2代入y= 得:x=4,
即ON=4,
∴OA=4﹣1=3,
∴四边形OABC的面积为OA×CM=3×4=12
【解析】(1)过C作CM⊥x轴于M,则∠CMO=90°,解直角三角形求出CM,根据勾股定理求出OM,求出C的坐标,即可求出答案;(2)根据D为中点求出DN的值,代入反比例函数解析式求出ON,求出OA,根据平行四边形的面积公式求出即可.
【考点精析】本题主要考查了比例系数k的几何意义和平行四边形的性质的相关知识点,需要掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
练习册系列答案
相关题目