题目内容
【题目】如图,已知和都是直角,它们有公共顶点.
(1)若,求的度数.
(2)判断和的大小关系,并说明理由.
(3)猜想:和有怎样的数量关系,并说明理由.
【答案】(1)120°;(2)相等,见解析;(3)AOB+∠DOE=180°,见解析
【解析】
(1)先根据∠AOE=∠AOD-∠DOE求出∠AOE的度数,然后根据∠AOB=∠AOE+∠BOE计算即可;
(2)根据角的和差及等量代换求解即可;
(3)∠AOB+∠DOE=180°,根据∠AOB=∠AOE+∠BOE,∠AOE=∠AOD-∠DOE整理可得.
解:(1)∵∠AOE=∠AOD-∠DOE=90°-60°=30°,
∴∠AOB=∠AOE+∠BOE=30°+90°=120°;
(2)相等,理由如下:
∵∠AOE=∠AOD-∠DOE=90°-∠DOE,
∠BOD=∠BOE-∠DOE=90°-∠DOE,
∴∠AOE=∠BOD ;
(3)∠AOB+∠DOE=180°,理由如下:
∵ ∠AOB=∠AOE+∠BOE
=∠AOD-∠DOE+∠BOE
=90°+90°-∠DOE
=180°-∠DOE ,
∴∠AOB+∠DOE=180°-∠DOE+∠DOE= 180°.
【题目】在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:
摸球总数n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
摸到红球数m | 325 | 1336 | 3203 | 6335 | 8073 | 12628 |
摸到红球的频率(精确到0.001) | 0.813 | 0.891 | 0.915 | 0.905 | 0.897 | 0.902 |
(1)由此估计任意摸出1个球为红球的概率约是 (精确到0.1)
(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P与P'的大小.