题目内容
【题目】如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕 点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.
【答案】详见解析.
【解析】
三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,EM,EN分别AB,CD于F,G使得∠BEM=∠AEN=60°,可证△BEF为等边三角形,即EB=EF,故B的对应点为F.根据SAS可证,即EA=GE
,故A的对应点为G. 由此可得:要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上, 平行四边形ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC.
解:要使该模板旋转60°后,三个顶点仍在 的边上,的角和边需要满足的条件是:∠ABC=60°,AB=BC
理由如下:
三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,使得∠BEM=∠AEN=60°,
∵AE⊥BC,即∠AEB=∠AEC=90°,
∴∠BEM<∠BEA
∴射线EM只能与AB边相交,记交点为F
在△BEF中,
∵∠B=∠BEF=60°,
∴∠BFE=180°-∠B-∠BEF=60°
∴∠B=∠BEF=∠BFE=60°
∴△BEF为等边三角形
∴EB=EF
∵当三角形模板绕点E旋转60°后,点B的对应点为F,此时点F在边AB边上
∵∠AEC=90°
∴∠AEN=60°<∠AEC
∴射线EN只可能与边AD或边CD相交
若射线EN与CD相交,记交点为G
在Rt△AEB中,∠1=90°-∠B=30°
∴BE=
∵AB=BC=BE+EC
∴EC=
∵∠GEC=∠AEC-∠AEG=90°-60°=30°
∵在中,AB//CD
∠C=180°-∠ABC=120°
又∵∠EGC=180°-120°-30°=30°
∴EC=GC
即AF=EF=EC=GC=,且∠1=∠GEC=30°
∴
∴EA=GE
∴当三角形模板绕点E旋转60°后,点A的对应点为G,此时点G在边CD边上
∴只有当∠ ABC=60°, AB= BC时,三角形模板绕点E顺时针旋转60°后,三个顶点仍在平行四边形ABCD的边上.
∴要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上, 平行四边形ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 45 | 50 | 60 |
销售量y(千克) | 110 | 100 | 80 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?
【题目】二次函数y=ax2+bx+c(a,b,c 为常数,且a≠0)的图像上部分点的横坐标x和纵
坐标y的对应值如下表
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | -3 | -3 | -1 | 3 | 9 | … |
关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.
【题目】阅读材料:
工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工处理这种材料时,材料温度是时间的函数下面是小明同学研究该函数的过程,把它补充完整:
在这个函数关系中,自变量x的取值范围是______.
如表记录了17min内10个时间点材料温度y随时间x变化的情况:
时间 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
温度 | 15 | 24 | 42 | 60 | m |
上表中m的值为______.
如图,在平面直角坐标系xOy中,已经描出了上表中的部分点根据描出的点,画出该函数的图象.
根据列出的表格和所画的函数图象,可以得到,当时,y与x之间的函数表达式为______,当时,y与x之间的函数表达式为______.
根据工艺的要求,当材料的温度不低于时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为______min.