题目内容
【题目】如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.
(1)求的大小;
(2)求的长.
【答案】(1);(2)
【解析】
(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;
(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB,进而证得△ADE∽△ACB,利用相似的性质求出AE即可.
解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
∴∠DAB=90°,AD=AB,
∴∠ABD=∠ADB=45°,
∵△EFG是由△ABC沿CB方向平移得到,
∴AB∥EF,
∴∠1=∠ABD=45°;
(2)由平移的性质得,AE∥CG,
∴∠EAC=180°-∠C=90°,
∴∠EAB+∠BAC=90°,
由(1)知∠DAB=90°,
∴∠DAE+∠EAB=90°,
∴∠DAE=∠CAB,
又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,
∴∠ADE=∠ACB,
∴△ADE∽△ACB,
∴,
∵AC=8,AB=AD=10,
∴AE=12.5.
【题目】我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号 | 活动类型 |
A | 经典诵读与写作 |
B | 数学兴趣与培优 |
C | 英语阅读与写作 |
D | 艺体类 |
E | 其他 |
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .
(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?
(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.