题目内容

【题目】如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.

(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是_________;②当AP=nPC时(n是正实数),四边形PMCN的面积是__________

(2)猜想论证

如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则=_______

(3)拓展探究

如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究的值,并说明理由.

【答案】(1)①a(2)(3)见解析

【解析】

试题分析:(1)①如图2,∵PM⊥BC,AB⊥B∴△PMC∽△ABC=又∵AP=2PC=,即=∴PM=a,即正方形PMCN的边长是a

②当AP=nPC时(n是正实数),=∴PM=a∴四边形PMCN的面积=(a)2=

(2)如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN=由PG∥AB,PH∥AD可得,

∵AB=a,BC=b,即==

(3)如图4,过P作PG∥AB,交BC于G,作PH∥AD,交CD于H,则∠HPG=∠DAB∵∠EPF=∠BAD∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM∴∠HPN=∠GPM∵∠B+∠D=180°∴∠PGC+∠PHC=180°又∵∠PHN+∠PHC=180°∴∠PGC=∠PHN∴△PGM∽△PHN=由PG∥AB,PH∥AD可得, ===∴由①②可得, =

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网