题目内容
【题目】如图,抛物线的顶点和抛物线与轴的交点在一次函数的图象上,它的对称轴是,有下列四个结论:①;②;③当时,.其中正确结论的个数是( )
A.0B.1C.2D.3
【答案】D
【解析】
由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=-2a可判断②;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x可判断③.
由抛物线的开口向下,且对称轴为x=1可知a<0,,即b=-2a>0,由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,则abc<0,故①正确;
∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,
∴a+b+1=k+1,即a+b=k,
∵b=-2a,
∴-a=k,即a=-k,故②正确;
由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,
∴ax2+bx+1>kx+1,即ax2+bx>kx,
∵x>0,
∴ax+b>k,故③正确;
故选:D.
练习册系列答案
相关题目