题目内容

【题目】已知:如图,点DABC的边BC上,AB=AC=CD,AD=BD,求ABC各内角的度数.

【答案】∠B=∠C=36°,∠CAB=108°.

【解析】

AD=BD得∠BAD=DBA,由AB=AC=CD得∠CAD=CDA=2DBA,DBA=C,从而可推出∠BAC=3DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得∠BAC的度数.

设∠B=α

AB=AC,

∴∠C=α,

BD=BA,

∴∠BAD=α,

∵∠ADCABC外角,

∴∠ADC=2α,

AC=DC,

∴∠CAD=2α,

∴∠BAC=3α,

∴在ABC中∠B+C+BAC=5α=180°,

α=36°,

∴∠B=C=36°,

∴∠CAB=108°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网