题目内容
【题目】如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-+c经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
【答案】(1)见解析;(2)见解析;(3)(﹣4,0)或(12,0)
【解析】
试题由折叠和矩形的性质可知∠EDB=∠BCE=90°,可证得∠EDO=∠DBA,可证明△ABD∽△ODE;由条件可求得OD、OE的长,可求得抛物线解析式,结合(1)由相似三角形的性质可求得DA、AB,可求得F点坐标,可得到BF=DF,又由直角三角形的性质可得MD=MB,可证得MF为线段BD的垂直平分线,可证得结论;过D作x轴的垂线交BC于点G,设抛物线与x轴的两个交点分别为M、N,可求得DM=DN=DG,可知点M、N为满足条件的点Q,可求得Q点坐标.
试题解析:(1)证明:∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE,
∴∠BDE=∠BCE=90°,∵∠BAD=90°,∴∠EDO+∠BDA=∠BDA+∠DAB=90°,
∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,∴△ABD∽△ODE;
(2)证明:∵,∴设OD=4x,OE=3x,则DE=5x,∴CE=DE=5x,∴AB=OC=CE+OE=8x,
又∵△ABD∽△ODE,∴,∴DA=6x,∴BC=OA=10x,
在Rt△BCE中,由勾股定理可得,即,解得x=1,
∴OE=3,OD=4,DA=6,AB=8,OA=10,∴抛物线解析式为y=﹣+3,
当x=10时,代入可得y=,∴AF=,BF=AB﹣AF=8﹣=,
在Rt△AFD中,由勾股定理可得DF= ∴BF=DF,
又M为Rt△BDE斜边上的中点,∴MD=MB,∴MF为线段BD的垂直平分线,∴MF⊥BD;
(3)解:由(2)可知抛物线解析式为y=﹣+3,设抛物线与x轴的两个交点为M、N,
令y=0,可得0=﹣+3,解得x=﹣4或x=12,∴M(﹣4,0),N(12,0),
过D作DG⊥BC于点G,如图所示,
则DG=DM=DN=8,∴点M、N即为满足条件的Q点,
∴存在满足条件的Q点,其坐标为(﹣4,0)或(12,0