题目内容
【题目】如图,在ABCD中,CF⊥AB于点F,过点D作DE⊥BC的延长线于点E,且CF=DE.
(1)求证:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的长.
【答案】(1)详见解析;(2)BC=10.
【解析】
(1)由平行四边形的性质可得AB∥CD,可得∠B=∠DCE,由“AAS”可证△BFC≌△CED;
(2)设BC=CD=AB=x,由直角三角形的性质可得(x﹣5)=x,可求x的值,即可求BC的长.
(1)证明:∵四边形ABCD是平行四边形
∴AB∥CD,AB=CD
∴∠B=∠DCE
∵CF⊥AB,DE⊥BC,
∴∠CFB=∠DEC=90°,且CF=DE,∠B=∠DCE
∴△BFC≌△CED (AAS)
(2)∵△BFC≌△CED
∴BC=DC=AB
设BC=x,
∴CD=AB=x
在Rt△BCF中,∠B=60°
∴∠BCF=30°
∴FB=BC
∴(x﹣5)=x
解得x=10
∴BC=10.
练习册系列答案
相关题目
【题目】2018年某省实施人才引进政策,对引进人才给予资金扶持和落户优惠,海内外英才纷纷向组织部门递交报名表.为了了解报名人员年龄结构情况,抽样调查了50名报名人员的年龄(单位:岁),将抽样得到的数据分成5组,统计如下表:
分组 | 频数(人数) | 频率 |
30岁以下 | 0.16 | |
大于30岁不大于40岁 | 20 | 0.40 |
大于40岁不大于50岁 | 14 | |
大于50岁不大于60岁 | 6 | 0.12 |
60岁以上 |
(1)请将表格中空格填写完整;
(2)样本数据的中位数落在_____,若把样本数据制成扇形统计图,则“大于30岁不大于40岁”的圆心角为______度;
(3)如果共有2000人报名,请你根据上面数据,估计年龄不大于40岁的报名人员会有多少人?