题目内容
【题目】如图,正方形ABCD的边长为2,点E,F分别是DC和BC两边上的动点且始终保持∠EAF=45°,连接AE与AF交DB于点N,M.下列结论:①△ADM∽△NBA;②△CEF的周长始终保持不变其值是4;③AE×AM=AF×AN;④DN2+BM2=NM2.其中正确的结论是( )
A. ①②③B. ①②④C. ②③④D. ①③④
【答案】B
【解析】
①根据题意证明∠ANB=∠MAD,又因为∠ADM=∠ABN=45°,由AA证明△ADM∽△NBA;
②把△ADE顺时针旋转90°得到△ABG,证明△AEF≌△AGF,得到DG=EF,求出△CEF的周长;
③根据平行线的性质判断即可;
④把△ADN顺时针旋转90°得到△ABH,证明△NAM≌△HAM,根据勾股定理证明结论.
解:①∠ANB=∠NDA+∠NAD=45°+∠NAD,∠MAD=∠MAN+∠NAD=45°+∠NAD,
∴∠ANB=∠MAD,又∠ADM=∠ABN=45°,
∴△ADM∽△NBA,①正确;
②如图1,把△ADE顺时针旋转90°得到△ABG,则BG=DE,∠FAG=∠FAB+∠DAE=45°,
在△AEF和△AGF中,
,
∴△AEF≌△AGF,
∴FG=EF,
∴△CEF的周长=CE+CF+EF=CE+DE+CF+FB=4,②正确;
③当MN∥EF时,AE×AM=AF×AN,
∵MN与EF的位置关系不确定,∴③错误;
④如图2,把△ADN顺时针旋转90°得到△ABH,则BH=DN,∠ABH=∠AND=45°,∠MAH=∠MAB+∠BAH=∠MAB+∠DAN=45°,
在△NAM和△HAM中,
,
∴△NAM≌△HAM,
∴MN=MH,
又∵∠MBH=∠MBA+∠ABH=90°,
∴BH2+BM2=MH2,即DN2+BM2=NM2,④正确.
故选:B.