题目内容
【题目】如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD,延长CE、BA交于点F,连接AC、DF.
(1)如图1,求证:四边形ACDF是平行四边形;
(2)如图2,连接BE,若CF=4,tan∠FBE=,求AE的长.
【答案】(1)详见解析;(2)5.
【解析】
(1)根据平行四边形的性质和角平分线的性质可得BF=BC=AD ,然后可得AF=CD,因为AB∥CD,所以四边形ACDF是平行四边形;
(2)根据平行四边形的性质可求出EF,根据三角函数即可求出BE的长,易求BF的长,问题得解.
解:(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,AB∥CD,
∴∠DCF=∠BFC,
又∵CE平分∠BCD,
∴∠BCF=∠FCD,
∴∠BFC=∠BCF,
∴BF=BC=AD,
∵AD=2AB,
∴BF=2AB,
∴AB=AF=CD,
又∵AB∥CD,
∴四边形ACDF是平行四边形;
(2)解: ∵四边形ACDF是平行四边形
∴EF=CE=,
又∵BF=BC
∴BE⊥CF
∵tan∠FBE=
∴BE=,
∴BF=10,
∴
【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | 4.5 | 6 |
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.