题目内容
【题目】已知x1,x2是方程x2﹣(2k﹣1)x+(k2+3k+5)=0的两个实数根,且x12+x22=39,则k的值为_____.
【答案】-3
【解析】
先根据判别式的意义得到△=(2k-1)2-4(k2+3k+5)≥0,解得k≤-,再根据根与系数的关系得到x1+x2=2k-1,x1x2=k2+3k+5,接着把已知条件变形得到(x1+x2)2-2x1x2=39,则(2k-1)2-2(k2+3k+5)=39,解得k1=-3,k2=8,然后根据k的范围确定k的值.
根据题意得△=(2k-1)2-4(k2+3k+5)≥0,解得k≤-,
∵x1+x2=2k-1,x1x2=k2+3k+5,
而x12+x22=39,
∴(x1+x2)2-2x1x2=39,
∴(2k-1)2-2(k2+3k+5)=39,
整理得k2-5k-24=0,
解得k1=-3,k2=8,
而k≤-,
∴k=-3.
故答案是:-3.
【题目】某公司销售部有营销员15人,销售部为了制定关于某种商品的每位营销员的个人月销售定额,统计了这15人某月关于此商品的个人月销售量(单位:件)如下:
个人月销售量 | 1800 | 510 | 250 | 210 | 150 | 120 |
营销员人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销员该月关于此商品的个人月销售量的平均数,并直接写出这组数据的中位数和众数;
(2)假设该销售部负责人把每位营销员关于此商品的个人月销售定额确定为320件,你认为对多数营销员是否合理?并在(1)的基础上说明理由.
【题目】如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
说明:补全表格时相关数据保留一位小数
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.