题目内容
【题目】已知是关于x的二次函数.
(1)求满足条件的k的值;
(2)k为何值时,抛物线有最低点?求出这个最低点.当x为何值时,y的值随x值的增大而增大?
(3)k为何值时,函数有最大值?最大值是多少?当x为何值时,y的值随x值的增大而减小?
【答案】(1)k=±2;(2) 见解析;(3)见解析.
【解析】
(1)直接利用二次函数定义得出符合题意的k的值;
(2)抛物线有最低点,所以开口向上,k+1大于0,再根据(1)中k的值即可确定满足条件的值,再根据二次函数性质,即可得最低点的坐标和函数的单调区间;
(3)函数有最大值,可得抛物线的开口向下,k+1小于0,再根据(1)中k的值即可确定满足条件的值,然后根据二次函数性质可求得最大值和函数单调区间.
(1) 根据二次函数的定义得 解得k=±2.
∴当k=±2时,原函数是二次函数.
(2) 根据抛物线有最低点,可得抛物线的开口向上,
∴k+1>0,即k>-1,根据第(1)问得:k=2.
∴该抛物线的解析式为,∴抛物线的顶点为(0,0),当x>0时,y随x的增大而增大.
(3) 根据二次函数有最大值,可得抛物线的开口向下,
∴k+1<0,即k<-1,根据第(1)问得:k=-2.
∴该抛物线的解析式为,顶点坐标为(0,0),
∴当k=-2时,函数有最大值为0. 当x>0时,y随x的增大而减小.
练习册系列答案
相关题目