题目内容
【题目】已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P的坐标为( )
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
【答案】B
【解析】
作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.
作A关于x轴对称点C,连接BC并延长交x轴于点P,
∵A(1,1),
∴C的坐标为(1,﹣1),
连接BC,
设直线BC的解析式为:y=kx+b,
∴,
解得:,
∴直线BC的解析式为:y=﹣2x+1,
当y=0时,x=,
∴点P的坐标为:(,0),
∵当B,C,P不共线时,根据三角形三边的关系可得:|PA﹣PB|=|PC﹣PB|<BC,
∴此时|PA﹣PB|=|PC﹣PB|=BC取得最大值.
故选:B.
练习册系列答案
相关题目
【题目】某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,其中的20m3仍按2元/m3计算,超过部分按2.6元/m3计算.设某户家庭月用水量xm3.
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | 21 |
(1)用含x的式子表示:
当0≤x≤20时,水费为 元;
当x>20时,水费为 元.
(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?